Gellan Gum-Based Hydrogel Bilayered Scaffolds for Osteochondral Tissue Engineering
نویسندگان
چکیده
منابع مشابه
Highly Concentrated Alginate-Gellan Gum Composites for 3D Plotting of Complex Tissue Engineering Scaffolds
In tissue engineering, additive manufacturing (AM) technologies have brought considerable progress as they allow the fabrication of three-dimensional (3D) structures with defined architecture. 3D plotting is a versatile, extrusion-based AM technology suitable for processing a wide range of biomaterials including hydrogels. In this study, composites of highly concentrated alginate and gellan gum...
متن کاملGellan gum: a new biomaterial for cartilage tissue engineering applications.
Gellan gum is a polysaccharide manufactured by microbial fermentation of the Sphingomonas paucimobilis microorganism, being commonly used in the food and pharmaceutical industry. It can be dissolved in water, and when heated and mixed with mono or divalent cations, forms a gel upon lowering the temperature under mild conditions. In this work, gellan gum hydrogels were analyzed as cells supports...
متن کاملA hydrogel-mineral composite scaffold for osteochondral interface tissue engineering.
Osteoarthritis is the leading cause of physical disability among Americans, and tissue engineered cartilage grafts have emerged as a promising treatment option for this debilitating condition. Currently, the formation of a stable interface between the cartilage graft and subchondral bone remains a significant challenge. This study evaluates the potential of a hybrid scaffold of hydroxyapatite (...
متن کاملHydrogel scaffolds for tissue engineering: Progress and challenges
Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular...
متن کاملFiber-reinforced hydrogel scaffolds for heart valve tissue engineering.
Heart valve-related disorders are among the major causes of death worldwide. Although prosthetic valves are widely used to treat this pathology, current prosthetic grafts cannot grow with the patient while maintaining normal valve mechanical and hemodynamic properties. Tissue engineering may provide a possible solution to this issue through using biodegradable scaffolds and patients' own cells....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Key Engineering Materials
سال: 2013
ISSN: 1662-9795
DOI: 10.4028/www.scientific.net/kem.587.255